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Abstract. Most communication networks are complex. In this paper, we address one of the fundamental
problems we are facing nowadays, namely, how we can efficiently protect these networks. To this end,
we study an immunization strategy and found that it works almost as good as targeted immunization,
but using only local information about the network topology. Our findings are supported with numerical
simulations of the Susceptible-Infected-Removed (SIR) model on top of real communication networks,
where immune nodes are previously identified by a covering algorithm. The results provide useful hints in
the way to designing and deploying a digital immune system.

PACS. 89.75.Fb Structures and Organization in Complex Systems – 89.20.Hh World Wide Web, Internet
– 89.20.-a Interdisciplinary applications of physics

1 Introduction

Communications networks have been intensively studied
during the last several years as it turned out that their
topology is far from being random [1–4]. In particular, it
has been found that physical networks — the Internet —
as well as logical — the World Wide Web — and peer-to-
peer networks — Gnutella — are characterized by a power
law degree distribution [4] (thus, they are referred to as
scale-free networks [5,6]), P (k) ∼ k−γ , where the degree
or connectivity k of a node is the number of nodes it is at-
tached to. These findings, together with similar network
structures found in fields as diverse as biological, social
and natural systems [7–9], have led to a burst of activ-
ity aimed at characterizing the structure and dynamics of
complex networks.

The spreading of an epidemic disease in complex net-
works was among the relevant problems that were first ad-
dressed in the literature [10–12]. Surprisingly, it was found
that for infinite scale-free networks with 2 < γ < 3, the
epidemic always pervades the system no matter what the
spreading rate is [11–14], even when correlations are taken
into account [15–17]. In other words, the usual threshold
picture does not apply anymore. This fact would be a
mere anecdote if not because most vaccination and pub-
lic health campaigns are based on the existence of such a
threshold [18]. In practice, it would be desirable to have a
threshold as large as possible for a given epidemic disease.
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Soon after the first studies on epidemic spreading, it
was realized that traditional vaccination strategies based
on random immunization, while worth taking for ran-
dom network topologies, were useless in scale-free net-
works [19]. Specifically, it was shown that a minimum
fraction as large as 80% of the nodes has to be immunized
in order to recover the epidemic threshold. New vacci-
nation strategies are thus needed in order to efficiently
deal with the actual topology of real-world networks. A
very efficient approach consists of vaccinating the highly
connected nodes in order to cut the path through which
most of the susceptible nodes catch the epidemics [19,20].
However, in order to do that, one has to identify the core
groups or hubs of the system. In general, this is extremely
unrealistic, particularly for large networks and systems
lacking central organizational rules such as social net-
works.

In this paper, we consider the immunization prob-
lem from a different perspective. We show that it can
be treated as a covering problem, in which a set of im-
mune agents has to be placed somewhere in the network.
The main advantage of this approach is that only local
topological knowledge is needed up to a given distance
d, so that it can be straightforwardly applied to a real
situation. To verify the results of the immunization strat-
egy, we implement the Susceptible-Infected-Removed epi-
demiological model [13,14] on top of the Internet maps
at the Autonomous Systems (AS) and router levels [2–4]
and compare with the results obtained by using targeted
and random immunization as well as a local immunization
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strategy. Our results indicate that the algorithm performs
quite well and is near the optimal one. On the other hand,
we show that the efficiency of the vaccination strongly de-
pends on the degree-degree correlations as the covering
outcome is directly related to the structure of the under-
lying network.

2 Susceptible-infected-removed model
on real nets

In order to be able to compare the efficiency of the dif-
ferent immunization strategies, we first perform extensive
numerical simulations of an epidemic spreading process
on top of real architectures (here, epidemics refers to any
undesired spreading process, i.e, virus, spam, etc.). We
consider the SIR model as a plausible model for epidemic
spreading [13,18]. In this model, nodes can be in three
different states. Susceptible nodes, S, have not been in-
fected and are healthy. They catch the disease via direct
contact with infected nodes, I, at a rate λ. Finally, re-
covered nodes, R, are those nodes that have caught the
disease and have stopped spreading it with probability β
(without loss of generality, β has been set to 1 henceforth).
The relevant order parameter of the disease dynamics is
the total number of nodes (or the fraction of them, R)
that got infected once the epidemic process dies out, i.e.,
when no infected nodes are left in the system.

On the other hand, the simulations performed
throughout this work have been carried out on real com-
munication networks. The fact that any study thought
to have practical applications should be tested in real
systems led us to such an election. These networks have
unique topological properties difficult to gather with exist-
ing generic network models — namely, degree-degree cor-
relations and clustering properties. The networks on top of
which numerical simulations of the immunization strate-
gies and the SIR dynamics have been performed are the
following. AS: autonomous system level graph representa-
tion of the Internet as of April 16th, 2001 [23]. Gnutella:
snapshot of the Gnutella peer to peer network, provided
by Clip2 Distributed Search Solutions. Router: router level
graph representation of the Internet [24]. The three net-
works are sparse and show an average degree around 3.
Additionally, they are small-worlds [25] with an average
distance between vertices less than 10, and they are char-
acterized by a power law degree distribution P (k) ∼ k−γ ,
with γ ≈ 2.2. A detailed characterization of these graphs
is presented in references [26] (Gnutella) and [2,4,27] (AS
and Router graphs).

These networks share a number of topological features
but are radically different in their degree-degree corre-
lations. Correlations are usually defined taking into ac-
count the degrees of nearest-neighbors. We have recently
shown [21], however, that whether a network can be re-
garded as assortative (when correlations are positive, i.e.,
there is a tendency to establish connections between ver-
tices with similar degrees) or disassortative (negative cor-
relations, the tendency is the opposite) depends on the
distance used to average the degrees of the neighboring
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Fig. 1. Correlations as a function of d for the AS and router
graph representations of the Internet. νd is the slope of the
curve 〈K(d)〉k, which measures the average degree of neighbors
at a distance d. See [21] for details of this quantity.

vertices. The AS and the Gnutella graphs show dissor-
tative correlations for any value of d, though the corre-
lations are smoothed as d grows. On the other hand, in
the Router network, the degree correlations are assortative
up to d = 2. However, for d > 2 the correlations become
dissortative and beyond d > 6 start to approach the un-
correlated limit as shown in Figure 1 [21]. These peculiar
properties directly affect the outcome of algorithms run
on top of these networks.

In the following, we focus on the results obtained for
the AS and router maps of the Internet. The behavior of
both the epidemic spreading process and the immuniza-
tion strategies for the Gnutella graph are qualitatively the
same as for the AS map, with the only difference of more
pronounced finite-size effects.

We have performed Monte Carlo simulations of the
SIR model on top of the Internet maps. Starting from an
initial state in which a randomly chosen node is infected,
susceptible nodes catch the disease (or virus) with prob-
ability λ if they contact a spreader. In its turn, infected
vertices become removed and do not take part anymore
in the spreading process at a rate β = 1. The fraction
of removed nodes, R, when no spreaders are left in the
system gives the epidemic incidence. All results have been
averaged over at least 1000 realizations corresponding to
different initially infected nodes. Figure 2 shows the epi-
demic incidence in the AS and router maps of the Internet
as a function of the spreading rate λ.

As can be seen from the figure, the epidemic thresh-
old is slightly larger in the router graph than in the net-
work made up of AS’s. This difference in the behavior of
the SIR model on different representations of the Internet
may be understood from the distinct degree-degree corre-
lations shown by both graphs. Though we think that the
main differences in the algorithm’s performance are due to
correlations, it should be noticed that a number of other
topological features such as clustering and hierarchy prop-
erties may also be at the root of the different behaviors.
Our guess is mainly based on the performance of local al-
gorithms such as the covering recipe that we will use in
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Fig. 2. Final fraction of infected nodes for the SIR model
and targeted immunization with different number of immu-
nized nodes for the AS (a) and router (b) map representations
of the Internet. Simulations were carried out starting from a
single infected node at t = 0 in all cases. The plots are in a
log-log scale for a better visualization.

the next section. As for correlations, in the AS map repre-
sentation, highly connected nodes are likely connected to
nodes with smaller degrees. Therefore, the spreading pro-
cess generally passes alternatively from highly to poorly
connected nodes. In this way, the epidemics has more
chances to reach a number of nodes other than the hubs.
This is not the case of the Router map, where it is more
likely that hubs are grouped together and that once one
of them got infected, its neighbors (also highly connected
nodes) do so. However, when the epidemics leaves the
hubs, the remaining (uninfected) nodes are, likely, poorly
connected and with high probability the process will die
out, specially for small values of λ ∼ λc. That is, in the
router map, the epidemic reaches the hubs, but then goes
down to nodes of decreasing degree and stops soon after-
wards, resulting in a smaller fraction of infected nodes (the
hubs and a few more, i.e, a tiny fraction of the network)
and thus to an effective threshold that is larger than that
for the AS.

In order to illustrate the importance of the local prop-
erties of the network on the performance of the immu-
nization, we analyze the results when targeted immuniza-
tion is implemented on each representation of the Internet.
In targeted immunization, a fraction of highly connected
nodes are immunized (i.e., do not get infected) in decreas-
ing order of their degrees. In the event that there are left
l immune nodes to be distributed within a connectivity
class k containing j > l nodes, the l immune nodes are ran-
domly distributed within the j nodes and the results are
averaged over at least 100 additional realizations of this
procedure. The results depicted in the figure suggest that
the degree-degree correlations is one of the main factors
influencing the performance of the immunization policy.
We see that even for small percentages of immune nodes,
immunization performs better in the AS graph. This may
be due to the compact distribution of hubs (which play

a key role in targeted immunization) in the router map
whereas for the AS representation they are distributed
throughout the whole network. Therefore, in the AS rep-
resentation, targeted immunization works better because
immune nodes are more efficient in cutting the paths lead-
ing to poorly connected nodes, the more abundant. These
differences will become more apparent later on when local
immunization strategies come into play.

3 Immunization strategies

Let us now summarize the local immunization strategy in-
troduced in this work. The allocation of network resources
to satisfy a given service with the least use of resources,
is a frequent problem in communication networks. In our
case, we would like to have a robust system in front of
a disease or virus spreading process but saving resources,
that is, using the minimum number of immune nodes. This
is a highly topical problem in communication networks as
it might lead to the developing and deploying of a digi-
tal immune system to prevent technological networks from
virus spreading. Recently [21], we have studied a general
covering problem in which every vertex is either covered
or has at least one covered node at a distance at most d.
In what follows, we show that the set of covered vertices
C can be taken as the set of nodes to be immunized.

The heuristic algorithm proceeds as follows [21]: for
every vertex i in the network, look for the vertex with
the highest degree within a distance d of i and immu-
nize it. In case there is more than one vertex with the
highest degree, one of them is selected at random and
immunized. Moreover, if there is already an immune ver-
tex within the neighborhood of i, that immunization is
kept. We have shown before [21] that this local algorithm
gives near-optimal solutions for a general distance-d cov-
ering problem, though the result of the covering depends
on topological features such as the degree-degree correla-
tions.

The immunization strategy here considered assumes
that covered vertices are immune nodes to the spreading
of a disease or virus. For instance, in a technological net-
work, they could be thought of as being special devices
devoted to filtering out any virus or attack. This would
imply that the spreading process stops when it arrives to
such nodes. This is of course the ideal situation. How-
ever, it happens more often that immune nodes can not
catch the epidemic, but they are not able to stop spread-
ing it through other nodes — as when you have an up-
to-date anti-virus. Therefore, we study the worse scenario
and consider that immunized nodes just repel the virus
cutting the path to infection spreading.

The approach presented here is in the spirit of the im-
munization strategy proposed by Cohen et al. [22]. Since
the immunization algorithm is local, one only needs in-
formation about the neighbors of a given node up to a
distance d. This information is usually available for small
values of d and easy to gather, in sharp contrast to tar-
geted immunization that requires complete knowledge of
the degree distribution [19,20]. The difference between our
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Fig. 3. Comparison of the immunization
strategies for the Internet AS map. In the fig-
ure, we have represented the ratio between
the epidemic incidence of the four immuniza-
tion strategies considered (R) and that of the
original system without immunization (RSIR)
for different values of 〈x〉. The legend refers
to the following immunization strategies: the
one introduced in this paper (local), targeted
immunization (Kmax), random immunization
(random) and single acquaintance immuniza-
tion (SAI). In this case, 1% of the non-immune
nodes were initially infected at random. See the
text for further details. The distances consid-
ered in the local algorithm are: (a) d = 1; (b)
d = 2; (c) d = 3; (d) d = 5.
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Fig. 4. Same as previous figure but for the
Internet router map. The distances considered
in the local algorithm are in this case: (a) d = 2,
(b) d = 5, (c) d = 7,(d) d = 10.

approach and that in [22] is that we look for the highly
connected nodes in small parts of the network, while the
strategy developed in [22] is based on the fact that ran-
domly selected acquaintances likely have larger connec-
tivities than randomly chosen nodes. Thus, in general,
we expect our strategy to perform better than that pro-
posed in [22], while keeping the local character of the
algorithm [28]. On the other hand, either the number
of immune nodes or the distance d, which is a measure
of the degree of local knowledge of the network topol-
ogy, should be fixed. This makes the algorithm more
parameter-constrained, but allows a more efficient distri-
bution of resources.

We have performed extensive numerical simulations
of four different immunization schemes. The immuniza-
tion obtained following the covering algorithm fixes the
fraction, 〈x〉, of immune nodes in the whole network for
each value of d. Random immunization means that a frac-

tion 〈x〉 of immune nodes is randomly placed on the net-
works. Targeted immunization looks for the 〈x〉N highly
connected nodes and immunizes them. Finally, the Sin-
gle Acquaintance Immunization (SAI) algorithm proposed
in [22] is run taking p = 〈x〉 and ensuring that the total
number of immune nodes is the same in both schemes. In
all cases, the results are averaged over many realizations
for each value of λ and 〈x〉. The results are displayed in
Figures 3 and 4.

As expected, targeted immunization produces the best
results for both topologies. Note that, as discussed in the
previous section, the performance of the algorithm de-
pends on the specific topology and produces different re-
sults for AS and router maps. On the other extreme we
find random immunization, whose performance is not af-
fected by the structure of the underlying networks. Turn-
ing our attention to local algorithms, it is found that
the immunization scheme based on the covering algorithm
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performs better than the SAI, even for small values of d,
where it is truly local. In fact, it is outperformed only by
the targeted procedure and for all values of the parame-
ters d and λ it lies between the most efficient and the SAI
scheme. Additionally, from a practical point of view, the
covering strategy could be a good policy since it balances
the degree of local knowledge and the efficiency of the
vaccination. Moreover, as all network topologies are not
neither completely known nor completely unknown, the
covering allows to fine-tune the value of d on a case-by-
case base (that is, according to the degree of local knowl-
edge of the network) and thus it is more flexible than other
immunization strategies (recall that it is the result of an
optimization).

We have further explored the differences between the
global and covering-based immunization schemes. In prin-
ciple, one may think that as we are immunizing highly
connected nodes, both strategies produce the same set of
immune nodes. Obviously, this is not the case since the
covering operates at shorter distances than targeted im-
munization (which operates at d = D, the diameter of
network). In fact, a direct comparison of who the immune
nodes are in both algorithms shows that no more than
50% of them are the same and both sets equal only when
d reaches the diameter of the network. Moreover, as a fur-
ther evidence of the influence of the graph representation
in the performance of immunization schemes, it is found
that for the router level the percentage above can increase
up to 70%.

Let us now restrict our discussion to the local (cover-
ing) immunization scheme and focus on the influence of
degree-degree correlations on the final size of the outbreak.
Figures 5 and 6 reflect the differences in the algorithm’s
performance for the AS and the Router maps of Internet.
Figure 5 illustrates the relative difference of the epidemic
incidence as a function of d, taking as a reference the size
of the outbreak at d = 1. The behavior depicted in the
figure is quite similar to the dependency of the number of
nodes covered by each immune node, 〈n〉, when d is in-
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creased [21]. For the AS network, the fraction of infected
nodes at the end of the epidemic spreading process rapidly
increases. In contrast, the increase in the epidemic inci-
dence for the router network takes place at larger values
of d. This indicates that for the same d > 1, the immuniza-
tion strategy works better at the router level as confirmed
in Figure 6, top panel. The reason of this behavior be-
comes apparent by noticing that for the router level 〈x〉 is
bigger than for the AS, but the number 〈n〉 of nodes “cov-
ered” on average by each immune node is smaller. The
combination of the two factors leads to a more efficient
immunization at the router level, however, at the cost of
more resources. Both strategies tend to be closer as d is in-
creased because at the router level the correlations change
beyond d > 2.

The previous result has to be carefully interpreted and
should not be misunderstood. A closer look at the influ-
ence of the correlations reveals that, although in general
they determine 〈x〉 and 〈n〉 for each map, these two quan-
tities alone do not suffice to explain all the differences
observed. Indeed, the local structure of the network turns
out to be at the root of the immunization efficiency and
the optimal trade-off between the size of the outbreak and
the least use of resources. To see this, we have analyzed
the situation in which both 〈x〉 (though the d’s are differ-
ent) and 〈n〉 are almost the same in the two representa-
tions. This case is represented in the bottom panel of Fig-
ure 6. As can be seen from the figure, in the latter case,
the immunization scheme for the AS outperforms that for
the router level. This behavior is due to the fact that in
the AS network, the immune nodes are more distributed
throughout the network because highly connected vertices
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alternate with poorly connected ones. On the contrary, at
the router level, the hubs are topologically closer to each
other (the correlations are positive) and thus some of the
immune nodes are not highly connected resulting in a less
efficient protection in front of an epidemic.

4 Discussion and conclusions

In this paper, we have analyzed the spreading of an epi-
demic disease on top of real communication networks both
with and without immunization. First, we have shown that
targeted immunization produces different results depend-
ing on the local properties of the underlying graph by
using different representations of the same technological
network, the Internet. Later, we turned our attention to
several immunization strategies and proposed a scheme
that is neither completely local nor global, but can be
tuned between the two extremes. The strategy introduced
has been shown to perform better than all previous meth-
ods irrespective of the degree of local knowledge, except
for the case of targeted immunization.

An important part of the work has dealt with the in-
fluence of degree-degree correlations on the performance
of all vaccination algorithms. To this respect, it has been
shown that local properties are extremely important for
the outcome of a given strategy. Moreover, the work pre-
sented here has been performed on top of real networks,
an thus the results are of high practical interest. An added
value of the method developed here is that the covering-
based strategy does not only deal with the degree of the
immune nodes, as targeted immunization does, but natu-
rally introduces the practical constraint of having limited
resources to be distributed in the system on top of which
the epidemics is spreading. Therefore, our method and the
results found can shed light and provide useful hints in the
search of optimal immunization strategies as the develop-
ment and deploying of a digital immune system, a highly
topical issue nowadays.

Finally, it is worth mentioning that although we have
not analyzed the case here, it would also be possible to
develop an even more flexible strategy in which the im-
munization through the covering algorithm is done with
a variable d for the same network, that is, one can imple-
ment an algorithm that optimize 〈x〉 locally for different
neighborhoods (i.e., different values of d for each neigh-
borhood) of a given (large) network.

In summary, our work points to a new direction in de-
signing immunization strategies, namely, the finding of a
better trade-off between resources and algorithm’s perfor-
mance.
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